The Galois module structure of integers in tame radical extensions.

Ilaria Del Corso Università di Pisa

Hopf algebras & Galois module theory University of Nebraska at Omaha May 30, 2024 Motivation: I want to listen to Paul's talk!

I needed a strategy . . .

I asked Paul to give a coordinate talk!

Consequences: I have to do my part...

$$\blacktriangleright G = Gal(L/K)$$

L is a left K[G]-module under the action

$$(\sum_{\sigma\in G}k_{\sigma}\sigma)\cdot x=\sum_{\sigma\in G}k_{\sigma}\sigma(x).$$

When we say that L is a Galois module, we are referring to this action.

Normal Basis Theorem L is a free K[G]-module of rank 1, namely

$$L = K[G]\omega$$

for some $\omega \in L$. $\{\sigma(\omega)\}_{\sigma \in G}$ is a K-basis of L called a normal basis.

If L and K are number fields (or *p*-adic fields), and denote by \mathcal{O}_L and \mathcal{O}_K their rings of integers.

 \mathcal{O}_L is a left $\mathcal{O}_K[G]$ -module.

Question

Is \mathcal{O}_L free (of rank one) over $\mathcal{O}_K[G]$? In this case, $\mathcal{O}_L = \mathcal{O}_K[G]\omega$ and we call $\{\sigma(\omega)\}_{\sigma \in G}$ a normal integral basis (NIB) of L/K.

The general answer to this question is no.

Theorem (Noether's theorem) $\mathcal{O}_L \text{ is } \mathcal{O}_K[G] \text{ locally-free } \iff L/K \text{ is tamely ramified.}$ Corollary $\mathcal{O}_L \text{ free over } \mathcal{O}_K[G] \implies L/K \text{ is tamely ramified }.$

Theorem (Hilbert–Speiser's theorem) L/\mathbb{Q} abelian L/\mathbb{Q} abelian + tame $\Leftrightarrow L/\mathbb{Q}$ admits a NIB (i.e. \mathcal{O}_L is free over $\mathcal{O}_K[G]$)

Theorem (Greither, Reploge, Rubin, Srivastav 1999) \mathbb{Q} is the only number field satisfying the H–S's thm

• Martinet 1971 First example of L/\mathbb{Q} tame not admitting a NIB Let $F = \mathbb{Q}(\sqrt{5}, \sqrt{21})$, and $m = \frac{5+\sqrt{5}}{2}\frac{21+\sqrt{21}}{2}$

 $L_1 = F(\sqrt{m}) \qquad L_2 = F(\sqrt{-3m})$ $L_i/\mathbb{Q} \text{ tame, } \operatorname{Gal}(L_i/\mathbb{Q}) \cong Q_8$

 L_1/\mathbb{Q} admits a NIB L_2/\mathbb{Q} does **not** admit a NIB

This example was very important and motivated Fröhlich's work on the locally free class group.

Since the 70's many authors worked on this topic in many directions: proving that tame extensions of a certain kind have a NIB, explicitly finding generators or giving counter examples.

A result for Kummer extensions

Gómez Ayala '94, idc+L. Rossi '10-'13

K number field, $\zeta_m \in K$, L/K finite Kummer extension Case L/K cyclic: $L = K(\alpha)$, $\alpha = \sqrt[m]{a}$, $a \in \mathcal{O}_K$

$$\mathsf{a}\mathcal{O}_{\mathsf{K}}=\prod_{\mathsf{P}\subset\mathcal{O}_{\mathsf{K}}}\mathsf{P}^{\nu_{\mathsf{P}}(\mathsf{a})}$$

For $0 \le i < m$ let

$$\mathcal{B}_i = \mathcal{B}_i(a) = \prod_{P \subset \mathcal{O}_K} P^{\lfloor \frac{\nu_P(a^i)}{m} \rfloor}$$

 \mathcal{B}_i is a sort of *m*-th root of $a^i \mathcal{O}_K$

Theorem

Let L/K be a tame cyclic Kummer extension of degree m. L/K has a NIB $\iff \exists \alpha \in \mathcal{O}_L$ such that $L = K(\alpha)$, $\alpha^m = a \in \mathcal{O}_K$, and the following conditions hold:

1. \mathcal{B}_i is principal for all i;

2. the congruence $\sum_{i=0}^{m-1} \frac{\alpha^i}{b_i} \equiv 0 \pmod{m}$ holds for some $b_i \in \mathcal{O}_K$, with $\mathcal{B}_i = b_i \mathcal{O}_K$. In this case, the integer $\omega = \frac{1}{m} \sum_{i=0}^{m-1} \frac{\alpha^i}{b_i}$ generates \mathcal{O}_L over $\mathcal{O}_K[G]$.

**

PROOF: \Leftarrow It is clear that $\mathcal{O}_{K}[G]\omega \subseteq \mathcal{O}_{L}$. To prove equality we have to show that $disc_{L/K}(\mathcal{O}_{K}[G]\omega) = disc_{L/K}(\mathcal{O}_{L})$.

Let
$$G = \langle \sigma \rangle$$
 and let $\hat{G} = \langle \chi \rangle$, with $\chi(\sigma) = \zeta_m$,
 $disc_{L/K}\mathcal{O}_K[G]\omega = \prod_{i=0}^{m-1} (\omega|\chi^i)^2 = \prod_{i=0}^{m-1} \frac{\alpha^{2i}}{b_i^2} = \frac{a^{m-1}}{(\prod b_i)^2}$
 $= \frac{\prod_{\mathcal{P} \subset \mathcal{O}_K} \mathcal{P}^{(m-1)ord_{\mathcal{P}}a}}{\prod_{\mathcal{P} \subset \mathcal{O}_K} \mathcal{P}^{2\sum_i [i \text{ ord}_{\mathcal{P}}a/m]}} = \prod_{\mathcal{P} \subset \mathcal{O}_K} \mathcal{P}^{m-(m, ord_{\mathcal{P}}a)}.$
 $disc_{L/K}(\mathcal{O}_K[G]\omega) = \prod_{\mathcal{P} \subset \mathcal{O}_K} \mathcal{P}^{m-(m, ord_{\mathcal{P}}a)}.$

$$disc(L/K) = \prod_{\mathcal{P} \subset \mathcal{O}_K} \mathcal{P}^{m-m/e_\mathcal{P}}$$

where $e_{\mathcal{P}}$ is the ramification index of \mathcal{P} in L/K.

Lemma

Let $L = K(\sqrt[m]{a})$ with $a \in \mathcal{O}_K$. Then, for any prime $\mathcal{P} \subset \mathcal{O}_K$ tamely ramified in \mathcal{O}_L , we have

$$e_{\mathcal{P}} = rac{m}{(m, ord_{\mathcal{P}}(a))}.$$

 $disc(L/K) = \prod_{\mathcal{P} \subset \mathcal{O}_K} \mathcal{P}^{m-(m,ord_{\mathcal{P}}a)}.$

 \Rightarrow Assume that L/K has a NIB generated by ω and let α be any Kummer generator of L/K. Then

$$\omega = \sum_{i=0}^{m-1} c_i \alpha^i, \text{ where } c_i \in K.$$

Using that $disc_{L/K}(\mathcal{O}_K[G]\omega) = disc(L/K)$ we get that ω has the required form and that the \mathcal{B}_i are principal.

Remark

- The criterion does not depend on the integral Kummer generator of the extension
- It is not always possible to satisfy condition 2 of the Theorem, even under condition 1.

*

General Kummer extensions

$$L/K \text{ be a Kummer extension of exponent } m (\zeta_m \in K).$$

$$L = K(\alpha_1, \dots, \alpha_r) = K(\alpha);$$

$$a_j = \alpha_j^m \in \mathcal{O}_K \text{ for } j = 1, \dots, r;$$

$$[L:K] = \prod_{j=1}^r [K(\alpha_j):K] = N;$$
For $\mathbf{i} \in \mathbb{Z}_m^r$ define $\mathbf{a}^{\mathbf{i}} = a_1^{i_1} \dots a_r^{i_r}$ and
$$\mathcal{B}_{\mathbf{i}} = \prod_{P \in \mathcal{O}_K} P^{\lfloor \frac{\nu_P(\mathbf{a}^{\mathbf{i}})}{m} \rfloor}$$

 \mathcal{B}_i the smallest ideal $\mathcal{I}\subset \mathcal{O}_{\mathcal{K}}$ such that $a^i\mathcal{I}^{-m}$ is an integral ideal in $\mathcal{O}_{\mathcal{K}}.$

top

Theorem (IDC, L. Rossi)

Let L/K tamely ramified Kummer extension of exponent m and degree N.

L/K has a NIB if and only if $\iff \exists \alpha = (\alpha_1, \dots, \alpha_r) \in \mathcal{O}_L^r$ s.t. $L = K(\alpha)$, and the following conditions hold:

- 1. \mathcal{B}_{i} is principal for any i;
- 2. the congruence

$$\sum_{\mathbf{i}} \frac{\alpha^{\mathbf{i}}}{b_{\mathbf{i}}} \equiv 0 \pmod{N}$$

holds for some $b_i \in \mathcal{O}_K$, with $\mathcal{B}_i = b_i \mathcal{O}_K$.

In this case, the integer $\omega = \frac{1}{N} \sum_{i} \frac{\alpha^{i}}{b_{i}}$ generates \mathcal{O}_{L} over $\mathcal{O}_{K}[G]$. Namely, $\mathcal{O}_{L} = \mathcal{O}_{K}[G]\omega$.

The Steintz class

Let L/K be a number fields extension, let v_1, \ldots, v_n be an K-basis of L and let \mathcal{I} be the fractional ideal of \mathcal{O}_F such that

$$disc(L/K) = \mathcal{I}^2 disc_{K/F}(v_1, \ldots, v_n).$$

The Steinitz class of L/K is the class of \mathcal{I} in Cl(K)

- it is well defined
- \mathcal{O}_L is a free \mathcal{O}_K -module $\iff [\mathcal{I}] = [\mathcal{O}_K]$
- Recall that if \mathcal{O}_L is free over $\mathcal{O}_K[G]$, then it is also free over \mathcal{O}_K

Proposition

Let L/K be a tame Kummer extension of exponent m, $\mathbf{a} \in \mathcal{O}_K^r$ such that $L = K(\sqrt[m]{\mathbf{a}})$. Then the Steinitz class of L/K is the ideal class of $(\prod \mathcal{B}_i)^{-1}$.

Namely, \mathcal{O}_L is free over $\mathcal{O}_K \iff \prod_{\mathbf{i} \in \mathbb{Z}_m^r} \mathcal{B}_{\mathbf{i}}$ is principal.

 $\mathbf{i} \in \mathbb{Z}_m^r$

Case $K = \mathbb{Q}(\zeta_m)$, $L = K(\sqrt[m]{a_1}, \dots, \sqrt[m]{a_r})$ where $a_i \in \mathbb{Q}$. Explicit tameness condition. $a \in \mathbb{Z}$ and $m = p_1^{n_1} \cdots p_s^{n_s}$ is odd $\mathbb{Q}(\zeta_m, \sqrt[m]{a})/\mathbb{Q}(\zeta_m)$ with (a, m) = 1 is tame $\iff a^{p_j - 1} \equiv 1 \pmod{p_j^{n_j + 1}}$ for all j. Existence of integral basis over \mathcal{O}_K . If L/K is tame then it admits

an integral basis.

Existence of a NIB over \mathcal{O}_K . Kawamoto ('85), Ichimura (2010): L/K cyclic, *m* sqr-free, (a, m) = 1, then L/K tame \iff NIB. The same is no more true for non-cyclic extensions.

Example. $\mathbb{Q}(\zeta_3, \sqrt[3]{10}, \sqrt[3]{46})/\mathbb{Q}(\zeta_3)$ is tame but has no NIB. If in addition $(a_i, a_j) = 1$ for all $i \neq j \Rightarrow \exists$ NIB.

Thank you!

